LABDANE DERIVATIVES, A BISNORDITERPENE AND SESQUITERPENES FROM RUTIDOSIS MURCHISONII

C. ZDERO, F. BOHLMANN, R. M. KING* and H. ROBINSON*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *Smithsonian Institution, Department of Botany, Washington D. C. 20560, U.S.A.

(Received 28 October 1986)

Key Word Index—Rutidosis murchisonii; Compositae; Inuleae; diterpenes; ent-labdanes; norditerpene; sesquiterpenes; α-curcumene derivatives.

Abstract—The aerial parts of *Rutidosis murchisonii* afforded several new *ent*-labdanes, a bisnorditerpene and two α-curcumene derivatives. The structures were elucidated by high field ¹H NMR spectroscopy and a few chemical transformations. The absolute configuration of the diterpenes was established by CD and by the Horeau method. The chemotaxonomic aspects are discussed briefly.

INTRODUCTION

The small Australian genus Rutidosis (Compositae, tribe Inuleae) is placed in the subtribe Gnaphaliinae between Helichrysum and the Schoenia group [1]. So far none of the seven species has been studied chemically. We therefore have investigated R. murchisonii F. Muell. In addition to several diterpenes, all belonging to the ent-labdane series, two α -curcumene derivatives as well as a known sesamin derivative were isolated.

RESULTS AND DISCUSSION

The aerial parts of R. murchisonii afforded squalene, caryophyllene epoxide, the labdanes 1-5, the bisnorditerpene 6, the α-curcumene derivatives 7 and 8 as well as the sesamin derivative 9 [2]. The ¹H NMR spectrum of 1 (Table 1) displayed three methyl singlets at δ 0.98, 1.07 and 1.11, a pair of broadened doublets at 4.35 and 4.52, an olefinic methyl singlet (δ 1.76) and five olefinic signals $(\delta 5.85 \ br \ d, 5.44 \ br \ dd, 6.31 \ dd, 4.93 \ br \ d \ and 5.08 \ br \ d)$. These data indicated the presence of a labdane derivative with double bonds at C-7, C-12 and C-14. This was supported by spin decoupling which allowed the assignment of all signals. The resulting sequences clearly indicated that an acetoxy group was at C-6. The configuration followed from the small coupling $J_{5,6}$. The second acetoxy group was at C-17 as followed the chemical shift of H-17. This was supported by partial saponification of 1 which afforded 2, identical with a diterpene also present in the extract. The ¹³C NMR spectrum (see Experimental) of 2 nicely agreed with the structure and the stereochemistry was established by NOE difference spectroscopy which, however, required a clear assignment of the methyl signals by spin decoupling. Clear W-couplings were present between H-18 and H-19 as well as between H-19, H-5 and H-3\beta. NOEs were observed between H-18, H-19 and H-6 as well as between H-9, H-1 and H-12 (first proton irradiated). Lithium aluminium hydride reduction of 1 gave the diol 2a. Manganese dioxide oxidation of the latter afforded the keto aldehyde 2b and the corresponding hydroxy aldehyde 2c. The ¹H NMR spectra of 2a-2c

(Table 1) supported the proposed structures. The CD curves of **2b** and **2c** favoured the presence of *ent*-labdanes if the interpretation for cyclohexenones was used [3]. The configuration of the Δ^{12} double bond followed from the chemical shift of H-14 if compared with the values of known isomeric labda-12,14-dienes [4].

The ¹H NMR spectrum (Table 1) of the main constituent 3 clearly indicated that the corresponding 17-oic acid was present. Accordingly, the pair of doublets for H-17 was missing and the H-7 signal was shifted downfield. Addition of diazomethane gave the corresponding methyl ester 3a and saponification afforded the hydroxy acid 3b which was used for the application of the Horeau method [5,6] to confirm the absolute configuration. The recovered α-phenylbutyric acid showed negative optical rotation. The optical yield was 26%. This result established the presence of *ent*-labdanes. The optical yield also can be determined from the integrals in the ¹H NMR spectrum of the obtained diastereomeric mixture.

The molecular formula of a minor compound (C₂₀H₂₆O₃) together with IR bands at 1775 and 1690 cm⁻¹ and the ¹H NMR spectrum (see Experimental) indicated the presence of the keto lactone 4. This was supported by spin decoupling and by the chemical shifts of H-5, H-7, H-9 and H-11. The nearly identical chemical shifts of H-20 in the spectra of 3 and 4 favoured the proposed configuration at C-11. An epimeric situation at C-11 most likely would influence the shift of this methyl signal.

The ¹H NMR spectrum (see Experimental) of the diacetate 5 clearly indicated the presence of epimers. Accordingly, the signals of H-11-H-17 were doubled. As, however, the remaining signals were nearly identical with those of 1 the epimeric center only could be at C-13. The large coupling of H-12 required a *trans* double bond. Thus 5 was a hydroxy derivative of 1 formed by allylic oxidation most likely via the corresponding hydroperoxide which, however, could not be detected.

The molecular formula of 6 (C₂₂H₃₂O₅) indicated the presence of a bisnorditerpene as the ¹H NMR spectrum (see Experimental) indicated that obviously a diacetate was present. Furthermore spin decoupling allowed the

1760 C. ZDERO et al.

2 2# 2Ь 2c 3 3b 3a 3c R1 CH2OAc CH2OH CH2OH CHO CHO CO₂H CO₂Me CO₂H CO₂Me =Ο αΟΗ,Η αΟΑς,Η αΟΑς,Η αΟΗ,Η αΟΗ,Η α OAc, H α OAc, H α OH, H =

assignment of the signals of H-9, H-11 and H-12 which required the presence of a conjugated ketone. A methyl signal at δ 2.26 was due to a methyl ketone. Thus 6 was the product of degradation of 1 most likely via 5. A closely related bisnorlabdane derivative with the same side chain has been reported previously [7, 8].

 \mathbb{R}^1

R2

The structures of 7 and 8, which only could be separated as their acetates, also followed from the ¹H NMR spectra (Table 2). As the concentrations were different the signals clearly could be assigned also in the spectra of the natural esters. A corresponding pair of isomeric angelates have been isolated previously from a Wedelia species [9].

The chemistry of this Rutidosis species differs clearly from that of the large genus Helichrysum [10]. A few species of the latter genus also contain labdane derivatives [11, 12], one of which has already been transferred to the new genus Edmondia [13]. From two Helichrysum species the lignan derivative 9 has been isolated [2, 14] but most likely the relevance of such sesamin-like compounds is

limited. Further studies of Australian representatives of the subtribe Gnaphaliinae may show whether the chemistry is useful for the taxonomy of this very difficult group of plants [1].

EXPERIMENTAL

The air dried aerial parts (700 g, collected in Queensland, voucher Robinson 86-0196, deposited in the U.S. National Herbarium, Washington) were extracted with $\rm Et_2O-MeOH-petrol,\ 1:1:1$, at room temp. (12 hr) and the extract obtained was first separated by CC (silica gel) and further by PTLC (silica gel PF 254) as reported previously [15]. The CC fractions obtained with petrol gave 80 mg squalene, the next fractions ($\rm Et_2O-petrol,\ 1:3$) afforded 10 mg caryophyllene epoxide, 150 mg 1 (PTLC: $\rm Et_2O-petrol,\ 1:10$, R_f 0.29), 5 mg 4 (R_f 0.20) and 10 mg of a mixture of 7 and 8 (R_f 0.40), which could not be separated even by HPLC (MeOH-H₂O, 17:3, R_f 6.5 min, always RP 8, ca 100 bar). The CC fractions obtained with

Table 1. ¹ H NMR spectral data of 1-3 (400 MHz, CDCl ₂	CIs. δ	. δ	δ	δ	δ	δ	ŝ	j	j	j	j	j	j	j	á	ć	ć	1									_				١.				,		ĺ	l	1	•	_	ſ	(K	ì	١	3	С	I	1	•	_		((_		Z	2	2	Ŀ	ľ	1	۲	ŀ	ı	1	ľ	ľ	1	4	ı	ı	۷	١	۱	ì	ľ	1	į))))	0	C	ı)	C	K	1	4	4	ı	1	í	(1	1	1	1	ĺ	ı			ı	ì	ţ	ţ	ì	ì	3	3	3	3	3	3	3	3	3	3	3	ì	ţ	ţ	ì	ì	ì	ì	ı	i						i	ı	ı	ì	ì	ì
--	--------	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	---	--	--	--	----	--	--	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	--	--	--	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	---	---	---	---	---	---

	1	2	2 a	2b	2c	3	3a	3Ь	3c
H-1e	1.95 br d	1.94 br d	1.92 br d	1.93 br d	1.93 br d	1.93 br d	1.89 br d	1.90 br d	1.89 <i>br d</i>
H-la	1.10 dt	1.10 dt	1.10 dt	1.12 dt	1.08 dt	1.11 dt	1.13 dt	1.13 dt	1.13 dt
H-2e	1.49 dtt	2.48 dtt	1.49 dtt	1.49 dtt	1.48 dtt	1.47 dtt	1.48 dtt	1.48 dtt	1.48 dtt
H-2a	1.65 dtt	1.63 dtt	1.64 dtt	1.61 dtt	1.63 dtt	1.62 dtt	1.64 dtt	1.65 dtt	1.64 dtt
H-3e	1.40 br d	1.39 br d	1.39 br d	1. 40 br d	1.40 br d	1.39 <i>br d</i>	1.40 <i>br d</i>	1.41 br d	1.40 br d
H-3a	1.22 dt	1.21 dt	1.23 dt	1.27 dt	1.22 dt	1.23 dt	1.23 dt	1.23 dt	1.23 dt
H-5	1.39 d	1.37 d	1.19 d	2.13 s	1.14 d	1.37 d	1.35 d	1.16 d	1.18 d
H-6	5.59 br t	5.59 br t	4.48 br.dt	_	4.69 m	5.68 br dd	5.63 ddd	6.73 dd	6.48 dd
H-7	5.85 br d	5.89 br d	5.92 br d	6.42 d	6.74 dd	6.66 dd	6.44 dd	4.57 br t	4.54 br t
H-9	2.04 br d	2.03 br d	2.01 brd	2.78 m	2.28 m	2.36 m	2.37 m	2.33 m	2.33 m
H-11	2.33 br d	2.34 br d	2.32 br d	2.74 m	2.71 dt	1226	2.58 br dt	2.65 dt	2.58 dt
H-11'	2.23 ddd	2.23 ddd	2.24 ddd	2.46 m	2.48 br d	2.36 m	2.25 br dt	2.33 m	2.25 dt
H-12	5.44 br dd	5.52 br dd	5.53 br dd	5.39 br dd	5.44 t	5.46 t	5.41 t	5.47 br t	5.42 br t
H-14	6.31 dd	6.34 dd	6.35 dd	6.29 dd	6.31 dd	6.33 dd	6.33 dd	6.32 dd	6.33 dd
H-15c	4.93 br d	4.94 br d	4.95 br d	4.93 br d	4.88 br d	4.89 br d	4.91 br d	4.90 br d	4.89 br s
H-15t	5.08 br d	5.10 br d	5.10 br d	5.09 br d	5.04 br d	5.04 br d	5.06 br d	5.04 br d	5.06 br d
H-16	1.76 br s	1.78 br s	1.79 br s	1.71 <i>br s</i>	1.72 br s	1.70 br s	1.71 brs	1.70 br s	1.71 br s
H-17	4.52 br d	4.09 br d	4.11 br dd	1000	10.40	_	_	_	_
H-17'	4.35 br d	3.96 br d	3.97 br d	9.68 s	9.48 s			_	_
H-18	0.98 s	0.98 s	1.06 s	1.21 s	1.10 s	0.99 s	0.98 s	0.97 s	0.97 s
H-19	1.11 s	1.11 s	1.32 s	0.94 s	1.34 s	1.12 s	1.12 s	1.34 s	1.34 s
H-20	1.07 s	1.07 s	1.08 s	1.08 s	1.07 s	1.12 s	1.12 s	1.14 s	1.13 s
OAc	2.04 s	2.03 s	_		_	2.06 s	2.07 s	_	_
	2.03 s	_	_	_	_		_	_	
OMe	-	_	_	_	_		3.61 s	_	3.63 s

J(Hz): 1e, 1a = 1a, 2a = 2a, 3a = 3a, 3b = 13; $1e, 2e = 1e, 2a = 1a, 2a = 2a, 3e = 2a, 3b \sim 3$; 5, 6 = 3.5; 6, 7 = 4; $6, 9 = 7, 17, = 7, 17' \sim 1$; $7, 9 \sim 2$; $9, 11 \sim 3$; 9, 11' = 11', 12 = 7.5; 11, 12 = 5; 11, 11' = 16; 14, 15t = 17; 14, 15c = 10.5; 17, 17' = 13; (compounds 3, 3a and 3b: 9, 11' = 11', 12 = 8; 9, 11' = 11', 12 = 5.5; 11, 11' = 15).

Table 2. 1 H NMR spectral data of 7 and 8 (400 MHz, CDCl₃, δ values)

	7	8	7 a	8a
H-5	6.74 d	6.97 d	7.03 d	} 7.05 ABq
H-6	6.93 d	6.73 d	7.08 d	(1.05 AB4
H-7	3.09 tq	2.77 tq	2.78 tq	2.80 tq
H-8	1.58 ddt	1.58 ddt	1.60 m	1.60 m
H-8'	1.49 ddt	1.48 ddt	1.50 m	1.50 m
H-9	${1.95 br a}$	$\}$ 1.87 br q	$\{1.90 br q$	$\}$ 1.88 br q
H-9′	\\ 1.33 br q	§1.07 UT Y	§1.30 01 q	∫1.00 <i>Ur q</i>
H-10	5.10 tqq	5.05 tqq	5.06 br t	5.05 br t
H-12	1.66 <i>br s</i>	1. 64 <i>br s</i>	1.66 br s	1.63 br s
H-13	1.53 br s	1.51 <i>br</i> s	1.54 br s	1.51 br s
H-14	1.21 d	1.16 d	1.17 d	1.15 d
H-15	2.12 s	2.24 s	2.24 s	2.23 s
OSen		6.01 <i>qq</i>	5.94 br s	5.94 br s
		2.25 d	2.22 d	2.21 d
		2.02 d	1.99 d	1.99 d
OAc				2.14 s

J(Hz): 5,6 = 8; 7,8 = 7,14 = 8; 8,8' = 14; 8,9 = 9,10 = 7.

Et₂O-petrol, 3:1, gave by PTLC (Et₂O-petrol, 1:1) 100 mg 3 (R_f 0.32), 10 mg 2 (R_f 0.40) and a mixture which afforded by HPLC (MeOH-H₂O, 4:1) 2 mg 6 (R_r 3.8 min) and 2 mg 5 (R_r 5.9 min). The CC fractions obtained with Et₂O gave 600 mg 3.

ent-6 β ,17-Diacetoxy-labda-7,12E,14-triene (1). Colourless oil; IR $\nu_{\max}^{CCl_{+}}$, cm⁻¹: 1745, 1250 (OAc); MS m/z (rel. int.): 328.240 [M - HOAc]⁺ (5) (calc. for $C_{22}H_{32}O_{2}$: 328.240), 268 [328 - HOAc]⁺ (47), 253 [268 - Me]⁺ (28), 187 [268 - CH₂CH=C

1762 C. ZDERO et al.

 $(Me) CH = CH_2$ (100), 81 $[C_6H_9]$ (95). 20 mg 1 in 3 ml MeOH were stirred for 15 min with 100 mg KOH in 0.5 ml H₂O. PTLC afforded 5 mg 2, identical with the natural product (1H NMR, TLC). To 100 mg 1 in 3 ml Et₂O 50 mg LiAlH₄ were added. Usual work-up gave 60 mg 2a, mp 70°; IR v CCl₄, cm⁻¹: 3605 (OH), 3090, 1640, 1610, 995, 905 (CH=C(R) CH=CH₂); MS m/z(rel. int.): 304.240 [M]* (1.5) (calc. for C₂₀H₃₂O₂: 304.240), 286 $[M - H_2O]^+$ (11), 271 $[286 - Me]^+$ (9), 268 $[286 - H_2O]^+$ (4), 187 $[268 - C_6H_9]^+$ (11), 81 $[C_6H_9]^+$ (74), 57 (100); $[\alpha]_D^{26}^-$ - 16 (CHCl₃; c 0.13). 50 mg 2a in 5 ml Et₂O were stirred 30 min with 150 mg MnO₂. PTLC (Et₂O-petrol, 1:3) gave 15 mg 2b (R_f 0.65) and 20 mg 2c (R_f 0.23). 2b: colourless oil; IR $v_{\text{max}}^{\text{CCl}_4}$, cm⁻¹: 2720, 1700 (C=CCHO), 1685 (C=CC=O); MS m/z (rel. int.); 300.209 [M] $^+$ (12) (calc. for $C_{20}H_{28}O_2$: 300.209), 285 [M - Me] $^+$ (6), 81 $[C_6H_9]^+$ (100); CD (MeCN) $\Delta\epsilon_{385}$ + 1.65. 2c: colourless oil; IR v CCl₄, cm⁻¹: 3600 (OH), 2720, 1700 (C=CCHO), 3080, 900 (CH=CH₂); MS m/z (rel. int.): 302.255 [M]⁺ (10) (calc. for $C_{20}H_{30}O_2$: 302.225), 287 [M - Me]⁺ (6), 284 [M - H₂O]⁺ (7), 81 [C₆H₉]* (100); CD (MeCN): $\Delta \varepsilon_{322} + 1.1$.

ent-6 β -Acetoxy-17-hydroxy-labda-7,12E,14-triene (2). Colourless oil; IR ν ^{CCL}_{max}, cm $^{-1}$: 3600 (OH), 3080, 1640, 910 (CH=CH₂), 1725, 1250 (OAc); MS m/z (rel. int.): 328.240 [M - H₂O] $^+$ (4.5) (calc. for C₂₂H₃₂O₂: 328.240), 286 [M - HOAc] $^+$ (28), 105 (100), 81 [C₆H₉] $^+$ (92); 13 C NMR (CDCl₃, C-1–C-20): 41.3 t, 18.9 t, 44.7 t, 33.8 s, 52.7 t, 67.1 t, 141.1 t, 133.8 s, 53.0 t, 36.8 s, 25.9 t, 121.6 t, 142.9 s, 134.1 t, 111.0 t, 12.0 t, 64.9 t, 32.7 t, 24.4 t, 16.1 t; OAc: 21.7 t, 170.5 s (assigned by 2D techniques).

ent-6\beta-Acetoxy-labda-7,12E,14-triene-17-oic acid (3). Colourless oil; IR $v_{max}^{CCl_4}$, cm⁻¹: 3500-2600, 1700 (CO₂H), 1740, 1240 (OAc); MS m/z (rel. int.): 360.230 [M]⁺ (3) (calc. for $C_{22}H_{32}O_4$: 360.230), 300 [M - HOAc] $^+$ (41), 256 [300-CO₂] $^+$ (36), 81 [C₆H₉] + (100). 50 mg 3 were converted to its methyl ester 3a (CH₂N₂); colourless oil; IR v CCl₄, cm⁻¹: 3090, 1640, 910 (CH $=CH_2$), 1740 (CO_2R , OAc); MS m/z (rel. int.): 374 [M]⁺ (0.3), 315 $[M - OAc]^+$ (1.7), 314.225 $[M - HOAc]^+$ (44) (calc. for $C_{21}H_{30}O_2$: 314.225), 81 $[C_6H_9]^{\frac{7}{4}}$ (100); $[\alpha]_D^{240}-145$ (CHCl₃, c 1.11). 50 mg 3 in 3 ml MeOH were heated for 20 min at 70° with 100 mg KOH in 0.5 ml H₂O. PTLC (Et₂O-petrol, 1:1) gave 30 mg 3a; colourless oil; IR $\nu_{\text{max}}^{\text{CCl}_4}$, cm⁻¹: 3620 (OH), 3500-2600, 1695 (CO₂H); MS m/z (rel. int.): 318.220 [M]⁺ (18) (calc. for $C_{20}H_{30}O_3$: 318.220), 300 [M - H_2O] (9), 219 [300 - C_6H_9] (42), 201 $[219 - H_2O]^+$ (8), 173 $[201 - CO]^+$ (10), 81 $[C_6H_9]^+$ (100). Addition of CH2N2 gave 3b; colourless oil (1H NMR see Table 1). To 10 mg 3b in 0.2 ml pyridine 20 mg p-dimethylaminopyridine and 0.03 ml α-phenylbutyric anhydride was added. After 12 hr at 20° the mixture was heated for 30 min at 70°. After standing with 0.1 ml H₂O for 6 hr usual work-up gave the diastereomeric esters and (-)-α-phenylbutyric acid (optical yield 26%, calculated from the ¹H NMR spectrum, 25%). Characteristic ¹H NMR signals (CDCl₃, minor diastereomer in parentheses): 5.58 (5.61) (br t, H-6), 6.47 (6.56) (dd, H-7), 5.40 (5.27) (br t, H-12), 6.33 (6.29) (dd, H-14), 5.06 (5.04) (br d, H-15t), 4.91 (4.90) (br d, H-15c), 1.71 (1.67) (br s, H-16), 3.62 (3.58) (s, OMe); OCOR: 3.40 (3.44) (t), 0.89 (0.92) (t); MS m/z (rel. int.): 478.308 [M] + (6) (calc. for C₃₁H₄₂O₄: 478.308), 463 (1), 447 (2), $314 [M - RCO_2H]^+ (100).$

ent-6-Oxo-labda-7,12E,14-triene-17,11-olide (4). Colourless oil; IR $v_{\rm CCL}^{\rm CLL}$, cm $^{-1}$: 1775 (y-lactone), 1690 (C=CC=O); MS m/z (rel. int.): 314.188 [M] $^+$ (18) (calc. for $C_{20}H_{26}O_3$: 314.188), 300 [M $-H_2O$] $^+$ (12), 218 (20), 203 [218 - Me] $^+$ (66), 175 [203 - CO] $^+$ (84), 81 [C₆H₉] $^+$ (100); 1H NMR (CDCl₃): 2.17 (s, H-5), 6.56 (d, H-7), 3.00 (dd, H-9), 5.18 (dd, H-11), 5.55 (br d, H-12), 6.41 (dd, H-14), 5.23 (br d, H-15c), 5.38 (br d, H-15t), 1.91 (br s, H-16), 1.04 (s, H-18), 1.18 (s, H-19), 1.14 (s, H-20); [J (Hz): 7,9 = 3; 9,11 = 8; 11,12 = 9].

ent-6 β ,17-Diacetoxy-labda-7,11E,14-trien-13 α - and β -ol (5).

Colourless oil; $IR v \xrightarrow{CCL}_{max}$, cm⁻¹: 3600 (OH), 1735, 1240 (OAc); MS m/z (rel. int.); 344.235 [M - HOAc] + (7) (calc. for $C_{22}H_{32}O_3$: 344.235), 326 [344 - H_2O] + (2), 284 [344 - HOAc] + (27), 269 [284 - Me] + (20), 178 (96), 69 (96), 55 (100); 1H NMR (CDCl₃, values for the epimer in parentheses): 1.38 (d, H-5), 5.61 (br t, H-6), 5.87 (br d, H-7), 2.48 (br d, H-9), 5.54 (5.50) (dd, H-11), 5.64 (5.63) (d, H-12), 5.96 (5.92) (dd, H-14), 5.09 (5.07) (br d, H-15c), 5.26 (5.24) (br d, H-15t), 1.39 (1.37) (s, H-16), 4.60 (4.55) (br d, H-17), 4.22 (4.18) (br d, H-17), 0.98 (s, H-18), 1.12 (s, H-19), 1.09 (s, H-20), 2.05 (6H), (2.04, 2.03) (s, OAc); [J (Hz): 5,6 = 3.5; 6,7 = 4; 6,9 = 7,17 = 7,17' ~ 1; 7,9 = 2; 9,11 = 10; 11,12 = 16].

ent-6 β ,17-Diacetoxy-13-oxo-bisnor-labda-7,11E-diene (6). Colourless oil; IR $\nu_{\rm max}^{\rm CCL}$, cm $^{-1}$: 1740, 1245 (OAc), 1680, 1620 (C =CC=O); MS m/z (rel. int.): 376.225 [M] $^+$ (1.4) (calc. for C₂₂H₃₂O₅: 376.225), 316 [M - HOAc] $^+$ (24), 274 [316 - ketene] $^+$ (48), 243 (89), 150 (100); 1 H NMR (CDCl₃): 1.40 (d, H-5), 5.63 (br t, H-6), 5.95 (br d, H-7), 2.65 (br d, H-9), 6.67 (dd, H-11), 6.13 (d, H-12), 2.26 (s, H-14), 1.00 (s, H-18), 1.17 (s, H-19), 1.13 (s, H-20), 2.07, 2.04 (s, OAc); [J (Hz): 5,6 = 3.5; 6,7 = 4; 6,9 = 7,17 = 7,17' \sim 1; 7,9 \sim 2; 9,11 = 10; 11,12 = 16); [α]_D^{24°} - 138 (CHCl₃; c 0.1).

2-Hydroxy-3-senecioyloxy- and 2-senecioyloxy-3-hydroxy α-curcumene (7 and 8). Colourless oil; MS m/z (rel. int.): 316.204 [M]⁺ (5) (calc. for $C_{20}H_{28}O_3$: 316.204), 234 [M-O=C=CHC(Me)=CH₂]⁺ (1), 83 (C_4H_7CO]⁺ (100), 55 [83 - CO]⁺ (16). 10 mg 7 were heated for 3 hr with Ac₂O at 70°. PTLC (Et₂O-petrol, 1:3) gave 2 mg 7a (R_f 0.55) and 4 mg 8a (R_f 0.45). 7a: colourless oil; IR v_{max}^{CCL} , cm⁻¹: 1775 (PhOAc), 1745, 1650 (C=CCO₂R); MS m/z (rel. int.): 358.214 [M]⁺ (2) (calc. for $C_{22}H_{30}O_4$: 358.214), 316 [M-ketene]⁺ (1), 275 [M- C_6H_{11}]⁺ (1), 193 [275 - O=C=CHR]⁺ (1.5), 83 [C_4H_7CO]⁺ (100). 8a: colourless oil; IR v_{max}^{CCL} , cm⁻¹: 1775 (PhOAc), 1745 (C=CCO₂R); MS m/z (rel. int.): 358.214 [M]⁺ (2) (calc. for $C_{22}H_{30}O_4$: 358.214), 316 (1), 275 (1), 193 (1.5), 83 (100).

REFERENCES

- Merxmüller, H., Leins, P. and Roessler, H. (1977), The Biology and Chemistry of the Compositae (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds) p. 590. Academic Press. London.
- 2. Kisiel, W. (1980) Planta Med. 38, 285.
- Burnett, R. D. and Kirk, D. N. (1981) J. Chem. Soc. Perkin I, 1460.
- 4. Bohlmann, F. and Zdero, C. (1974) Chem. Ber. 107, 1416.
- 5. Horeau, A. (1962) Tetrahedron Letters 965.
- 6. Horeau, A. and Kagan, H. B. (1964) Tetrahedron 20, 2431.
- Hlubucek, J. P., Aasen, A. J., Almquist, S. O. and Enzell, C. R. (1974) Acta Chem. Scand. Sect. B 28, 131.
- Herz, W., Watanabe, K., Kulanthaivel, P. and Blount, J. F. (1985) Phytochemistry 24, 2645.
- Bohlmann, F., Gerke, T., Jakupovic, J., Borthakur, N., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1673.
- Jakupovic, J., Kuhnke, J., Schuster, A., Metwally, M. A. and Bohlmann, F. (1986) Phytochemistry 25, 1133.
- Bohlmann, F., Zdero, C., Hoffmann, E., Mahanta, P. K. and Dorner, W. (1978) Phytochemistry 17, 1917.
- Bohlmann, F., Zdero, C., Abraham, W. R., Suwita, A. and Grenz, M. (1980) Phytochemistry 19, 873.
- Hilliard, O. M. and Burtt, B. L. (1981) Bot. J. Linn. Soc. 82, 181.
- Jakupovic, J., Pathak, V. P., Bohlmann, F., King, R. M. and Robinson, H. (1987) Phytochemistry 26, 803.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.